Asymptotic probability measures of zeta-functions of algebraic number fields

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Properties of Dedekind Zeta Functions in Families of Number Fields

The main goal of this paper is to prove a formula that expresses the limit behaviour of Dedekind zeta functions for Re s > 1/2 in families of number fields, assuming that the Generalized Riemann Hypothesis holds. This result can be viewed as a generalization of the Brauer–Siegel theorem. As an application we obtain a limit formula for Euler–Kronecker constants in families of number fields.

متن کامل

Asymptotic properties of zeta functions over finite fields

In this paper we study asymptotic properties of families of zeta and L-functions over finite fields. We do it in the context of three main problems: the basic inequality, the Brauer–Siegel type results and the results on distribution of zeroes. We generalize to this abstract setting the results of Tsfasman, Vlăduţ and Lachaud, who studied similar problems for curves and (in some cases) for vari...

متن کامل

Partial Zeta Functions of Algebraic Varieties over Finite Fields

Motivated by arithmetic applications, we introduce the notion of a partial zeta function which generalizes the classical zeta function of an algebraic variety defined over a finite field. We then explain two approaches to the general structural properties of the partial zeta function in the direction of the Weil type conjectures. The first approach, using an inductive fibred variety point of vi...

متن کامل

Tate’s Thesis on Zeta Functions on Number Fields

In this paper, we examine John Tate’s seminal work calculating functional equations for zeta functions over a number field k. Tate examines both ‘local’ properties of k, completed with respect to a given norm, and ‘global’ properties. The global theory examines the idele and adele groups of k as a way of encoding information from all of the completions of k into single structures, each with its...

متن کامل

Isomorphisms of Algebraic Number Fields

Let Q(α) and Q(β) be algebraic number fields. We describe a new method to find (if they exist) all isomorphisms, Q(β) → Q(α). The algorithm is particularly efficient if there is only one isomorphism.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 1992

ISSN: 0022-314X

DOI: 10.1016/0022-314x(92)90039-r